
Application-relevant changes in
PLCnext Technology firmware 2025

Application notes

111781_en_00 Phoenix Contact 2 / 28

Table of Contents
1 Introduction.. 4

1.1 General advantages .. 4

1.2 Changes regarding application development... 5

1.3 Schedule.. 5

2 C++ standard, libraries and classes... 6
2.1 Update to C++ 20 .. 6

2.2 Library Arp.Base.Core .. 6

2.2.1 Mapping Arp::byte to std::byte.. 7

2.2.2 class AppDomain ... 9

2.2.3 class AppDomainSingleton.. 9

2.2.4 class Singleton<T> .. 11

2.2.5 class ArpVersion .. 12

2.2.6 class Exception .. 12

2.2.7 class TypeName<T> and CommonTypeName<T> 13

2.2.8 class DateTime... 13

2.2.9 class String... 13

2.3 Library Arp.Base.Acf.Commons..15

2.3.1 The library implementation of a custom project 15

2.3.2 The component implementation of a custom project 17

2.3.3 TraceController from Arp.System.Commons.................................. 19

2.4 Library Arp.Base.Rsc.Commons ...19

3 Miscellaneous... 19
3.1 Logging ..19

3.1.1 Logging API .. 19

3.1.2 Log file separation ... 19

3.2 External libraries update...20

3.2.1 CppFormat library replaced by libfmt 10.2.1 20

3.2.2 boost libraries updated to version 1.84.. 21

3.3 CMake adjustments ..21

3.4 API documentation ...21

3.5 PLCnext CLI adaption..21

3.6 Changing the initialization system..22

3.7 Rework of network management ...22

111781_en_00 Phoenix Contact 3 / 28

3.8 Activation of Usrmerge ...23

3.9 New Web-based Management (WBM 2.0) ...23

3.10 Removal of Linux packages/tools/libraries..23

3.10.1 Removal of the vim editor ... 23

3.10.2 Removal of the busybox package ... 24

3.10.3 Change of NTP daemon... 24

3.10.4 Removal of strongSwan legacy configuration interface............... 25

4 Security-related changes ... 25
4.1 Prevent using RTLD_GLOBAL when loading shared libraries25

4.2 Removing unprivileged folders from ld.so.conf ...25

4.3 Redesign of remoting to platform and security requirements26

4.4 ACF can restrict capabilities and UID/GID of processes26

4.5 Verification of signed application update containers ..26

4.6 App part types Linux Daemon and Shared Library...26

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 4 / 28

1 Introduction
This documentation specifies changes of the PLCnext Control firmware and SDK
regarding the upcoming release 2025.0 that may be relevant to user-generated
applications. The description also applies to the Preview 2024.7 which is a public alpha
version for evaluation.

The major change is the non-compliance of the binary compatibility to former SDKs. A
recompile of user code that is based on any pre-2025 SDK is mandatory. Furthermore,
some code adjustments might become necessary, which are mostly indicated through
deprecated warnings.

Firmware 2025.0 comes with some fundamentally updated parts of the
underlying Linux® operating system and adapts the PLCnext Runtime System to those
changes. This is intended to improve the long-term compatibility of binary files from C+
+ or MATLAB®/Simulink® programs, as well as components and apps.

The updates to the Linux® system will facilitate future updates to the kernel, the
installation of new technologies and, above all, the security hardening of the system to
be prepared for the upcoming Cyber Resilience Act in the European Union.

Adjustments are to be made publicly available in 2025. In parallel, the
current 2024.0 LTS based on the familiar foundation of PLCnext Technology will get
security-related fixes for an extended period (details see Schedule).

Note: Up to the 2025.0 release, interfaces and other details may change without
prior notice. See www.plcnext.help/Changes_2025.htm for current information.

1.1 General advantages

The 2025.0 release will implement the following optimizations and lays the foundations
for later implementation:

– Increased stability due to adjustments of internal system functions
– Implementing long-term binary-compatible interfaces so we can continuously

develop new RSC services
– Simplified implementation of user applications by means of standardized interfaces
– Several Linux® adaptations:

– Increased security by splitting into separate processes and better use of Linux®
capabilities

– Removal of Linux® packages with high potential for security vulnerabilities
– Switch to Linux® systemd for a better adaptation to new technology
– Faster boot process due to parallel start of Linux® services

– New system monitoring for CPU, RAM, flash memory, and processes
– Implementation of interfaces to add WBM configuration pages for user components
– Support for versioning of user components
– Improved diagnostics by splitting into different log files
– Deep and secure integration of OCI containers for firmware functions and apps
– Newly designed Web-based Management:

– single sign-on with OAuth2 allows for easy but secure access
– modern layout based on Angular.io that adapts to display sizes ("responsive")

file:/C:/Users/pyjp02/AppData/Local/Temp/RHTMP/ARC_2025_pdfWQUCQC/contents/assets/snippets/ARC_2025_1.hts#schedule
https://www.plcnext.help/Changes_2025.htm

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 5 / 28

1.2 Changes regarding application development

The substantial changes from developers' view are:

– The C++ standard is elevated to the more modern C++ 20 (formerly C++ 17) and
standardized data types

– Library Arp.System.Core is substituted by the new library Arp.Base.Core
– The public classes of Arp.System.Acf were moved to the new library

Arp.Base.Acf.Commons
– Refactoring of Logging substruction
– Removed RTLD_GLOBAL flag while loading shared libraries
– Update of several external libraries, e.g.:

– CppFormat upgrade to libfmt 10.2.1
– boost update to version 1.84 (but see boost version for details)

1.3 Schedule

The 2024.0 LTS firmware release is available for all PLCnext Control device
types, and will be maintained for an extended period of
2 years without integration of any of the changes relevant to developing
applications. This way, customers can benefit from security fixes and patches
without having to adapt the productive applications to the upcoming changes
for another 1 ½ years. But there won't be an LTS successor on the that code
base.

Another feature release is derived from the well-known code base.

The public Preview 2024.7 contains most of the 2025.0 changes. Developers
are invited to inspect that code base and begin testing their applications in that
environment.

The 2025.0 firmware release for all PLCnext Control hardware is not considered
to be an LTS version. Of course, security updates will be provided.

New features are built upon the 2025.0 code base.

The 2026.0 LTS and all further firmware releases will be based on the
improved foundation of PLCnext Technology.

(Subject to change
without prior notice)

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 6 / 28

2 C++ standard, libraries and classes

2.1 Update to C++ 20

With firmware release 2025.0, the C++ language standard used in the SDK is updated to
C++ 20 to enable the usage of new features provided by the language. Since features of
C++ 20 are used in the SDK’s header files, all compilation units including headers from
the PLCnext Technology SDK must be recompiled using at least C++ 20.

The new features of C++ 20 which are now available with PLCnext Technology can be
found in the cppreference.com for C++ 20.

The main improvements regarding Arp code are described in the following
subsections.

Simplified namespace syntax

The syntax of namespace declaration was simplified as shown in the following example.

Before C++ 20:

namespace Arp { namespace System { namespace Commons
{

// code here

}}} // end of namespace Arp::System::Commons

From C++ 20:

namespace Arp::System::Commons
{

// code here

} // end of namespace Arp::System::Commons

The new namespace syntax should be preferred in future development.

2.2 Library Arp.Base.Core

(formerly Arp.System.Core)

The entire code of the Arp.System.Core library is re-implemented in the
Arp.Base.Core library. The purpose of this change is to provide a source-compatible
migration path to ensure binary compatibility in future releases. Arp.Base.Core
implements some techniques to further separate the interface from the implementation
to enable new features and easier fixes. Some inconsistencies in naming and behavior
have also been fixed.

Even though the location of the library in the SDK has changed, it does not cause any
adjustments of the include directives nor any type names:

– All include directives of Arp.System.Core files are delegated to the corresponding
header file in Arp.Base.Core

https://en.cppreference.com/w/cpp/20

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 7 / 28

– All types of the Arp.Base.Core library are defined in namespace
Arp::Base::Core , but are imported into the Arp namespace, as was in the
Arp.System.Core library.

All (non-template) classes in the Arp.Base.Core library implement the PImpl pattern
now. This is to avoid any binary incompatibilities in future when extensions or
modifications become necessary.

The Arp.System.Core library was built as archive and linked statically, which causes
some trouble with the AppDomain singleton pattern, so that the AppDomain instance
had to be injected into any shared library. This issue is now fixed, since the
Arp.Base.Core library is built as a shared library and linked dynamically. Therefore,
dependencies do not propagate to the client's link process anymore.

There are only a few minor changes regarding the usage of Arp.Base.Core , which are
mostly indicated through deprecated warnings during compilation, while the warning
message gives a hint how to fix it. All deprecated operations will be removed in future
(but not yet in firmware release 2025.0).

2.2.1 Mapping Arp::byte to std::byte

C++ 17 introduced a new datatype called std::byte . This type might be seen as a real
binary type of size 'one byte', which was lacking in C++ for the time being.

The characteristics of this datatype are:

– It's not an integral datatype.
– It's not an arithmetic datatype.
– It only supports logical bit operations.
– Initialization with integral datatypes is not possible; therefore, in namespace Arp two

string literal operators were defined: _b and _B (see examples in the code block
below).

PLCnext Technology firmware release 2021.6 switched to the C++ 17 standard already.
At that time, the C++ compiler may have regarded the datatype byte as ambiguous, so
that our Change Notes stated:

"C++ 17 introduces the datatype std::byte which is unfortunately not compatible
with Arp::byte . Thus, if the namespaces std and Arp are both active, the
compilation results in an error. In this case existing C++ sources have to be adjusted,
so that they explicitly use Arp::byte (e.g. by adding using byte = Arp::byte;)."

With the 2025.0 firmware, the Arp::byte datatype is switched from std::uint8_t
to std::byte . Up to now it was just an alias of Arp::uint8 which maps to unsigned
char . Thus, if user code generates compile errors related to the new Arp::byte
datatype, it is necessary to just switch to Arp::uint8 to avoid them.

Another approach would be to adapt the code to the new datatype if it should represent
a plain byte buffer. To get familiar with the new byte datatype, examine the following
code examples, which demonstrate the usage of it:

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 8 / 28

String literal operator for byte datatype:

byte b = 0; // distinct type => compile error!
byte b1 = 0_b;
byte b2 = 123_B;
byte b3 = 0xff_B;
byte b4 = 0xFE_b;
byte b5 = 333_B;

Zero initialization:

byte b = static_cast<byte>(0); // static_cast operator
byte b0 = (byte)0; // explicit C cast
byte b1 = byte(0); // explicit C++ cast
byte b2 = 0_b; // use of string literal operator _b
byte b3{ 0 }; // {}-Initialization with implicit cast
byte b4{ 0_b }; // {}-Initialization (initialize first field by 0,
 // all others are default initialized)
byte b5{ }; // Default {}-Initialization (value is zero'ed)
byte b6[6]{ }; // Default array {}-Initialization (array is zero'ed)
byte b7[7]{ 0_b }; // Explicit array {}-Initialization with zero
byte b8[]{ 0_b, 0_b, 0_b }; // Initialization through initializer list (size==3)
byte b9[9] { 0 }; // distinct type => compile error!

Number initialization:

byte b = 123; // distinct type => compile error!
byte b = static_cast<byte>(1); // static_cast operator
byte b0 = (byte)123; // explicit C cast
byte b1 = byte(0x9A); // explicit C++ cast
byte b2 = 111_b; // use of string literal operator _b
byte b3{ 255 }; // {}-Initialization with implicit cast
byte b4{ 0xA4_b }; // {}-Initialization
byte b5[5]{ 5_b }; // Partial array Initialization through
 // initializer list => {5, 0, 0, 0, 0}
byte b6[6]{ 1_b, 2_b, 3_b }; // Partial array Initialization through
 // initializer list => {1, 2, 3, 0, 0}
byte b7[]{ 1_b, 2_b, 3_b }; // Initialization through
 // initializer list (size==3)
byte b8[8] { 8 }; // distinct type => compile error!

Byte format operations defined by Arp:

byte b0{};
byte b1 = 1_b;
byte b2 = 43_B; // ==0x2B
byte b3 = 0xff_B;

Assert::AreEqual("00", String::Format("{}", b0));
Assert::AreEqual("01", String::Format("{}", b1));
Assert::AreEqual("2b", String::Format("{}", b2));
Assert::AreEqual("ff", String::Format("{}", b3));

Bit operations:

byte b11111110 = 254_b;
byte b00001111 = 1_b | 2_b | 4_b | 8_b; // bitwise | operator
byte b00001110 = b00001111 & b11111110; // bitwise & operator
byte b01111111 = static_cast<byte>(~0x80_b); // bitwise ~ operator

Assert::AreEqual(0x0F_b, b00001111, "Bitwise | operator.");
Assert::AreEqual(0x0E_b, b00001110, "Bitwise & operator.");
Assert::AreEqual(0x7F_b, b01111111, "Bitwise ~ operator.");

Shift operation:

constexpr byte b1 = 0x01_b;
uint16 u16 = uint16(b1 << 7);
static_assert(u16 == 128, "Shift operation of byte in range.");

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 9 / 28

If shift operation fails:

byte b1 = 0x01_b;
uint16 u16 = uint16(b1 << 8); // fails, correct code would be:
uint16 u16 = uint16(b1) << 8 // ok!
Assert::AreEqual(u16, 256, "Shift operation of byte as uint16.");
// The failing shift operation would be okay
// for any 1 byte integral data type like uint8,
// but not for std::byte,
// because std::byte is not cast implicitly to int

Converting string from and to bytes:

String actual("abc");
std::vector<byte> bytes = actual.ToBytes();
String expected(bytes);

Assert::AreEqual(expected, actual);

2.2.2 class AppDomain

The following operations are deprecated:

– AppDomain::GetCurrent()→ use AppDomain::GetInstance() instead.
– AppDomain::Assign(AppDomain&) → it's not required any more.

2.2.3 class AppDomainSingleton

The following operation is deprecated:

– AppDomainSingleton::GetInstancePtr()→ use
AppDomainSingleton::IsCreated() to check if it was created,
and use &AppDomainSingleton::GetInstance() to get access to the instance
pointer.

The following operation changes its behavior:

– AppDomainSingleton::CreateInstance(...)→ throws an exception now if the
singleton was already created.

The AppDomainSingleton class is deprecated.

It should not be used any more. The main goal of this class was to fix the issue, that the
Arp::Singleton<T> base class has to be implemented as template, so that it only
works within shared-library scope, but not within process-wide scope.

The GlobalSingleton pattern should be used instead of the AppDomainSingleton
implementation. The following demo code might be seen as a template to be copied
into custom projects, with replacing the class name by the desired custom class name.

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 10 / 28

Header file of the GlobalSingleton pattern:

...continuation see next page...

#pragma once
#include "Arp/Base/Core/Arp.hpp"
#include <memory>

namespace Apps::Demo::Extension::Internal
{

class GlobalSingleton
{
public: // usings
 using Instance = GlobalSingleton;
 using InstancePtr = std::unique_ptr<Instance>;

public: // construction
 // If the constructor shall get parameters
 // then the CreateInstance(..) operation has to be adjusted accordingly
 GlobalSingleton(void) = default;

public: // copy/move/assign/destruction
 GlobalSingleton(const GlobalSingleton& arg) = delete;
 GlobalSingleton(GlobalSingleton&& arg) = delete;
 GlobalSingleton& operator=(const GlobalSingleton& arg) = delete;
 GlobalSingleton& operator=(GlobalSingleton&& arg) = delete;
 ~GlobalSingleton(void) = default;

public: // static singleton operations
 static Instance& CreateInstance(void);
 static bool IsCreated(void);
 static void DisposeInstance(void);
 static Instance& GetInstance(void);

private: // static fields
 static InstancePtr instancePtr;
};

///
// inline methods of class GlobalSingleton

} // end of namespace Apps::Demo::Extension::Internal ©

 P
ho

en
ix

 C
on

ta
ct

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 11 / 28

Source file of GlobalSingleton pattern:

If the constructor of the GlobalSingleton class requires some arguments then the
CreateInstance(..) operation must be adjusted accordingly.

Note: The GlobalSingleton pattern does not work from within static libraries.

2.2.4 class Singleton<T>

The Singleton<T> class implemented some operations only intended to be used by
the AppDomain and AppDomainSingleton classes. Since they got refactored, these
functions are not needed any more.

The following operation is deprecated:

– Singleton<T>::GetInstancePtr(void) → use Singleton<T>::IsCreated()
to check if it was created; use &Singleton<T>::GetInstance() to get access to
the instance pointer.

The following protected operation is deprecated:

– Singleton<T>::SetInstance(T* pInstance)→ not required anymore.

The following operation changes its behavior:

– Singleton<T>::CreateInstance(...) → throws exception now if singleton was
already created.

#include "Apps/Demo/Extension/Internal/GlobalSingleton.hpp"
#include "Arp/Base/Core/TypeName.hxx"
#include "Arp/Base/Core/Exception.hpp"

namespace Apps::Demo::Extension::Internal
{

using namespace Arp;

// initializing of static fields
GlobalSingleton::InstancePtr GlobalSingleton::instancePtr;

GlobalSingleton::Instance& GlobalSingleton::CreateInstance()
{
 if (IsCreated())
 {
 throw Exception("Singleton instance of type '{}' was created yet!", TypeName<Instance>());
 }
 instancePtr = std::make_unique<Instance>();
 return *instancePtr;
}

bool GlobalSingleton::IsCreated()
{
 return instancePtr != nullptr;
}

GlobalSingleton::Instance& GlobalSingleton::GetInstance()
{
 if (!instancePtr)
 {
 throw Exception("Singleton instance of type '{}' was not created yet!", TypeName<Instance>());
 }
 return *instancePtr;
}

void GlobalSingleton::DisposeInstance()
{
 instancePtr.reset();
}

} // end of namespace Apps::Demo::Extension::Internal ©

 P
ho

en
ix

 C
on

ta
ct

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 12 / 28

2.2.5 class ArpVersion

The ArpVersion combined multiple functionalities in a single class: a version number
and additional information like state and name. To simplify the usage of ArpVersion ,
this class was divided into two classes in the Arp.Base.Core library:

– Version → a simple version class consisting of four integer properties: Major ,
Minor , Patch , and Build

– ArpVersion → providing the build version, the build name and the build state

The following operations and properties of class ArpVersion are therefore
deprecated:

– ArpVersion::Current
→ use ArpVersion::GetCurrent() instead

– ArpVersion::GetMajor()
→ use ArpVersion::GetBuildVersion().GetMajor() instead

– ArpVersion::GetMinor()
→ use ArpVersion::GetBuildVersion().GetMinor() instead

– ArpVersion::GetPatch()
→ use ArpVersion::GetBuildVersion().GetPatch() instead

– ArpVersion::GetBuild()
→ use ArpVersion::GetBuildVersion().GetBuildNumber() instead

– ArpVersion::operator<
→ use ArpVersion::GetBuildVersion() for comparison instead

– ArpVersion::operator>
→ use ArpVersion::GetBuildVersion() for comparison instead

– ArpVersion::operator<=
→ use ArpVersion::GetBuildVersion() for comparison instead

– ArpVersion::operator>=
→ use ArpVersion::GetBuildVersion() for comparison instead

The following constructors and operations of the Version class are deprecated and
were only added for code compliance:

– Version(Value major, Value minor, Value patch, Value build, const
String& state, const String& name)
→ use ArpVersion class instead

– Version::GetName()
→ use ArpVersion class instead

– Version::GetState()
→ use ArpVersion class instead

2.2.6 class Exception

The following protected operations are deprecated:

– Exception::Exception(String&&, const Exception::Ptr&)
→ use Exception(ExceptionTypeId, String&&, const Exception&)instead

– void Exception::Format(int indentLevel, bool
withInnerException)const
→ use void Exception::Format(bool withInnerException)const instead

– uint32 Exception::GetTypeCodeInternal(void)const
→ not required anymore

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 13 / 28

– The return value of Exception::GetInnerException() changed from
Exception::Ptr to const Exception&
→ not a deprecation warning but a compile error occurs when using this operation.

2.2.7 class TypeName<T> and CommonTypeName<T>

The classes TypeName<T> and CommonTypeName<T> provided a public member
variable Value . This can cause issues regarding compatibility in the future.
TypeName<T> contained a function to generate the CommonTypeName<T> . This violates
the Single Responsibility principle.

2.2.7.1 class TypeName<T>

The following operations and properties are deprecated:

– TypeName<T>::Value
→ use operation TypeName<T>::GetFullName(void) instead

– TypeName<T>::GetCommonName(void)
→ use class CommonTypeName<T> instead

2.2.7.2 class CommonTypeName<T>

The following properties are deprecated:

– CommonTypeName<T>::Value
→ use operation CommonTypeName<T>::GetFullName() instead

2.2.8 class DateTime

The class DateTime provided public member variables. This can cause compatibility
issues in the future.

Currently, DateTime only implements UTC-based timestamps. When support for local
time is added in the future, DateTime objects with an unspecified time zone will cause
problems. Therefore, these are not tolerated anymore.

The following properties are deprecated:

– DateTime::MinTicks
→ use DateTime::GetMinTicks() instead

– DateTime::MaxTicks
→ use DateTime::GetMaxTicks() instead

The following operation changes its behaviour:

– DateTime constructor throws an exception now if the DateTimeKind parameter is
not set to DateTimeKind::Utc

2.2.9 class String

Some member functions of String were renamed for more clarity and for
conformance to the C++ standard library.

The following properties are deprecated:

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 14 / 28

– String::GetBaseString()
→ use String::GetStdString() instead

– String::StartWith(..)
→ use String::StartsWith(..) instead (C++ 20 introduced
std::basic_string<…>::starts_with()).

– String::EndWith(..)
→ use String::EndsWith(..) instead (C++ 20 introduced std::basic_string<…
>::ends_with()).

Since C++ 20, the C++ standard defines the std::span type to determine the size of a
static array automatically by the compiler. Thus, the explicit specified
parameter delimitersCount is not required any more, and shall be omitted.

Therefore, the following operation change its signature and causes compile errors if not
altered:

– String::Split(const CharType delimiters[], size_t delimitersCount,
bool trimTokens, bool removeEmptyTokens)
→ the new signature is:
String::Split(std::span<const CharType> delimiters, bool
trimTokens, bool removeEmptyTokens)const;

The following operations change their behavior and would cause compile errors, which
is caused by the upgrade of libfmt library:

– When using String::Format(..) the formatting of some primitive types changes:
– Arp::int8 is formatted as a number now (formerly as a character)
– Arp::uint8 is formatted as a number now (formerly as a character)
– Arp::byte is formatted as a 2-digit hex number number now (formerly as a

character)

– String::Format(..) does not accept following types any more:
– raw enums

→ cast the values to int instead
– enum classes which do not implement the Arp enum pattern

→ cast the values to int instead
– Variables of type std::atomic<T>

→ format the raw value by calling std::atomic<T>::load() instead
– std::thread::id

→ no suggestions so far
– smart pointers like std::shared_ptr<T>

→ obtain the raw pointer by calling std::shared_ptr<T>::get() and cast it to
void*

– The requirements on custom types to be formatted using String::Format have
changed.
– Instead of providing an operator<<(std::ostream&, T) function, a

fmt::formatter<T> specialization has to be provided.
– If the ostream operator operator<< is defined already, this is just a matter of

adding an appropriate using declaration on global namespace level:
template<> struct fmt::formatter<T> : public
fmt::ostream_formatter {}; where T is the fully qualified name of the
custom type (see example below).

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 15 / 28

Template specialization of String formatter:

template<> struct fmt::formatter<Arp::Base::Core::String> : public fmt::ostream_formatter {};

2.3 Library Arp.Base.Acf.Commons

As mentioned above, the public code of the Arp.System.Acf library has moved to the
new library Arp.Base.Acf.Commons . This was caused by the fact, that the Acf did
not separate the interfaces from the implementation code, which violates the Inversion
of Dependencies principle.

Even though the location of the library in the SDK has changed, it does not cause any
adjustments of the include directives nor any type names:

– All include directives of Arp.System.Acf files are delegated to the corresponding
header file in Arp.Base.Acf.Commons

– All types of the Arp.Base.Acf.Commons library are defined in namespace
Arp::Base::Acf::Commons , but are imported also into the former namespace
Arp::System::Acf to avoid code adaptation

But in contrast to the Arp.Base.Core library, the revised Acf code causes some
major code changes:

– All user code based on the Acf classes ComponentBase and LibraryBase must be
adjusted to fit to the new interfaces.

2.3.1 The library implementation of a custom project

2.3.1.1 The library declaration

The project's library class is derived by LibraryBase from Acf and implements a
default constructor as well as an operation to obtain the singleton.

Header file:

Changes:

– The former code also derives the library class by Singleton<SdkLibrary> →
remove this

#pragma once
#include "Arp/Base/Core/Arp.hpp"
#include "Arp/Base/Acf/Commons/LibraryBase.hpp"

namespace Apps::Demo::Sdk
{

using Arp::Base::Acf::Commons::ILibrary;
using Arp::Base::Acf::Commons::LibraryBase;

class SdkLibrary : public LibraryBase
{
public: // construction/destruction
 SdkLibrary(void);

public: // static singleton operations
 static ILibrary& GetInstance(void);
};

} // end of namespace Apps::Demo::Sdk ©

 P
ho

en
ix

 C
on

ta
ct

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 16 / 28

– The signature of the constructor was formerly SdkLibrary(AppDomain&
appDomain)→ remove the parameter

2.3.1.2 The library definition

The implementation of the project's library shall look like this:

Changes:

– The former code passed the ARP_VERSION_CURRENT macro to the constructor of
LibraryBase . This is no longer necessary. The version of the SDK is passed to the
library using another mechanism.

– The version parameter to the constructor of LibraryBase is a version number
intended for the user. It can be used to track a version of a library. The new
Arp.System.Acf.Services.ISystemInfoService provides methods to query
information about the loaded components. For each component the Arp SDK
version and the user version is provided by the service.

– The former implementation of the library constructor registers the provided
components through accessing the protected componentFactory member variable
directly. This is now replaced by the call of LibraryBase::AddComponentType<T>
operation, where T is the component type to register.

– The singleton is implemented by the project's library itself through the
GetInstance() operation, using a local static instance (see Scott Meyers (1996),
More Effective C++, Addison-Wesley, pp. 146 ff.).

– The name of the library's entry function was static so far and always called
ArpDynamicLibraryMain . From now on it depends on the project's name (or
library's name, respectively). It consists of the safe name of the shared library
omitting the extension .so as well as the default Linux lib prefix and appends a static
suffix called _MainEntry . The safe name of the library replaces all special
characters by underscores, e.g. if the project/library is called libArp.Plc.Gds.so, the
main entry function shall be called: Arp_Plc_Gds_MainEntry .

– In the ACF configuration files (*.acf.config) the new optional attribute mainEntry of
the Library element may be used to specify an alternative name for the
mainEntry function.

#include "Apps/Demo/Sdk/SdkLibrary.hpp"
#include "Apps/Demo/Sdk/SdkComponent.hpp"
#include "Arp/Base/Core/TypeName.hxx"

namespace Apps::Demo::Sdk
{

SdkLibrary::SdkLibrary()
 : LibraryBase(/* User defined version: */ ArpVersion(1,2,3))
{
 this->AddComponentType<SdkComponent>();
 // Add more component types here if required
}

ILibrary& SdkLibrary::GetInstance()
{
 static SdkLibrary instance;
 return instance;
}

extern "C" ARP_EXPORT ILibrary& Apps_Demo_Sdk_MainEntry()
{
 return SdkLibrary::GetInstance();
}

} // end of namespace Apps::Demo::Sdk ©

 P
ho

en
ix

 C
on

ta
ct

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 17 / 28

2.3.2 The component implementation of a custom project

2.3.2.1 The component declaration

The project's component class is derived by ComponentBase from Acf .

Header file:

Changes:

– The signature of the constructor changed from SdkComponent(IApplication&
application, const String& name) to SdkComponent(ILibrary& library,
const String& name)

– The static SdkComponent::Create(...) operation having the same signature as
the former constructor might be removed.

– All special member functions (copy and move operations, destructor) can be
removed, if not required by the implementation of the derived class.

– All canonical constructors and assignment operators can be removed.
– The function IComponent::GetVersion() has been removed, since it is now

ambiguous. It can be replaced using GetLibrary().GetBuildVersion() . Note
the new function ILibrary::GetLibraryVersion() .

2.3.2.2 The component definition

The implementation of the project's component shall look like this:

#pragma once
#include "Arp/Base/Core/Arp.hpp"
#include "Arp/Base/Acf/Commons/ComponentBase.hpp"

namespace Apps::Demo::Sdk
{

using namespace Arp;
using namespace Arp::Base::Acf::Commons;

class SdkComponent : public ComponentBase
{
public: // construction/destruction
 SdkComponent(ILibrary& library, const String& name);

public: // IComponent operations
 void Initialize(void)override;
 void SubscribeServices(void)override;
 void LoadSettings(const String& settingsPath)override;
 void SetupSettings(void)override;
 void PublishServices(void)override;
 void LoadConfig(void)override;
 void SetupConfig(void)override;
 void ResetConfig(void)override;
 void Dispose(void)override;
 void PowerDown(void)override;

public: // properties

public: // operations

private: // methods

private: // fields

private: // static fields
};

} // end of namespace Apps::Demo::Sdk ©

 P
ho

en
ix

 C
on

ta
ct

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 18 / 28

Changes:

– The signature of the constructor of class ComponentBase changed
from ComponentBase(IApplication&, ILibrary&, const String&,
ComponentCategory, size_t, bool)
to ComponentBase(ILibrary&, const String&, ComponentCategory,
size_t)
Thus, the first parameter of type IApplication was removed. Pass the
component's constructor arguments accordingly to ComponentBase class as shown
in the example above. The start order of components must now be passed explicitly.

– Use GetDefaultStartOrder() for a sensible default value for the start order. The
value shall only be changed to resolve dependencies of multiple custom
components.

#include "Apps/Demo/Sdk/SdkComponent.hpp"
#include "Apps/Demo/Sdk/SdkLibrary.hpp"

namespace Apps::Demo::Sdk
{

SdkComponent::SdkComponent(ILibrary& library, const String& name)
 : ComponentBase(library, name, ComponentCategory::Custom, GetDefaultStartOrder())
{
}

void SdkComponent::Initialize()
{
 // register components, initialize singletons
 // subscribe notifications or events here
}

void SdkComponent::SubscribeServices()
{
 // subscribe the services used by this component here
}

void SdkComponent::LoadSettings(const String& settingsPath)
{
 // load firmware settings here
}

void SdkComponent::SetupSettings()
{
 // setup firmware settings here
}

void SdkComponent::PublishServices()
{
 // publish the services of this component here
}

void SdkComponent::LoadConfig()
{
 // load project config here
}

void SdkComponent::SetupConfig()
{
 // setup project config here
}

void SdkComponent::ResetConfig()
{
 // implement this inverse to SetupConfig() and LoadConfig()
}

void SdkComponent::Dispose()
{
 // implement this inverse to SetupSettings(), LoadSettings() and Initialize()
}

void SdkComponent::PowerDown()
{
 // implement this only if data must be retained even on power down event
}

} // end of namespace Apps::Demo::Sdk ©

 P
ho

en
ix

 C
on

ta
ct

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 19 / 28

2.3.3 TraceController from Arp.System.Commons

The class Arp::System::Commons::Diagnostics::TraceController is removed
from the SDK. The functionality is offered by the Arp.Services.TraceController
component and its ITraceControllerServiceRSC service.

2.4 Library Arp.Base.Rsc.Commons

(formerly Arp.System.Rsc.Services)

Changes:

– When calling RSC services in C++ with a parameter of type RscVariant<N> , then
compile errors might occur because the interface of RscVariant has changed. In
this case, please ask for direct developer support.

– Related to template class RscVariant<N> and template class RscString<N> :
The template parameter N specifies the maximal length of the string. Formerly the
effective length was N-1 , due to the NUL terminator; now it is N . This issue was
claimed frequently, so that it was fixed with this Application-relevant Changes
release.

– If any RSC services were implemented (non-public feature), the service
implementation code has to be re-generated by the RscGenerator . In some rare
cases, the code of the service implementation has to be adjusted.

– The class RscStreamAdapter in C++ was renamed to RscStream . Thus, if the
compiler claims a non-overridden Service-Impl operation, which uses
RscStreamAdapter , just rename it to RscStream .

– RscStructReader.hxx and RscStructWriter.hxx have been replaced with
RscStructReader.hpp and RscStructWriter.hpp (respectively). The template classes
RscStructReader<MaxStringSize> and RscStructWriter<MaxStringSize>
have been replaced with the non-template classes RscStructReader and
RscStructWriter (respectively). The latter classes implement template operations
which deduce the template arguments automatically.

3 Miscellaneous

3.1 Logging

3.1.1 Logging API

The logging substruction was refactored completely. Nevertheless, the public API did
not change, except of the following:

– The static logging implementation using macros was removed because it was not
used

– The logging implementation using streams was removed because it was not used

3.1.2 Log file separation

To filter and find log messages more easily, the Output.log will be split into multiple log
files.

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 20 / 28

The main log file is renamed to Arp.log:

– Size: 16 MB + 1 backup file
– All loggers starting with Arp, Eclr and CommonRemoting log to this file (see

exceptions below).

For the following components, separate log files will be created:

– PROFINET: Arp.Io.ProfinetStack.log
– SPNS: Arp.Services.SpnsProxy.log
– eHMI: Arp.Services.Ehmi.log
– Size: 2 MB each + 1 backup file

An additional log file will be created to store identification and version information at
system start:

– Arp.Init.log
– Size: 1 MB + 1 backup file
– The purpose of this file is to store persistently some important information that

would otherwise be overwritten by log file rotation. These include:
– Firmware version
– Vendor, article name, article number, hardware revision, serial number
– FPGA version
– SPNS firmware version
– PCIe extensions: vendor, article name
– File system: size, free space
– External SD card: present, enabled, free space
– Function and location, initial value and changes
– Network interfaces (no IP address configuration, since it is too volatile)

An additional log file will be created for customer messages, that is every logger whose
name does not start with Arp (see exceptions above):

– Custom.log
– Size: 2 MB + 1 backup file

The separated files can be merged using the tool arp-merge-logs on the controller. For
information, run arp-merge-logs --help in the console.

3.2 External libraries update

3.2.1 CppFormat library replaced by libfmt 10.2.1

The CppFormat library has moved to libfmt , and parts of the libfmt library were
adapted to the C++ standard.

PLCnext Technology does not use the std::format due to lacking compiler support
and compatibility issues with already present operator<< implementations for user-
defined types. But PLCnext Technology uses the libfmt code directly, which was now
updated to version 10.2.1.

There are no compatibility issues expected except those listed in class String .

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 21 / 28

3.2.2 boost libraries updated to version 1.84

The previously used version 1.63 of the boost libraries is quite old and does not
support C++ 20. To make newer features available, the boost libraries are updated to
version 1.84 for the final 2025.0 release. Meanwhile, the public Preview 2024.7 first
comes with an update to version 1.78 because of a pending issue that still needs to be
solved.

Some of the boost::filesystem classes have minor changes regarding their
behavior, but this was adapted in the PLCnext Technology firmware code. Thus, there
are no compatibility issues expected, as long as the boost code was not used directly
by custom code.

3.3 CMake adjustments

The PLCnext Technology SDK now provides CMake export configuration files. A virtual
package Arp is provided that includes all the packages included in the SDK. This
defines the target Arp::ALL that encompasses all relevant libraries and sets the basic
usage requirements for the libraries. These include C++ 20 and linker flag --no-
undefined .

Link at least one of the Arp libraries to enable these preparations.

In CMakeLists.txt:

find_package(Arp REQUIRED)
target_link_libraries(YourTarget PRIVATE Arp::ALL)

Individual libraries are exported in the namespace Arp . For example, to explicitly link
the GDS, use Arp::Arp.Plc.Gds .

For cross-compiling on Windows®, the mingw SDK includes a CMake toolchain file in
sysroots\x86_64-w64-
mingw32\usr\share\cmake\OEToolchainConfigStandalone.cmake.

The function arp_add_tracing from cmake/ArpTracing.cmake was moved to the
export package. It is available after find_package(Arp) .

3.4 API documentation

The API documentation is provided as an HTML-based online help system for each
firmware release from 2020.0 LTS up to the latest releases. Each online help system is
publicly available at PLCnext Technology C++ API documentation.

For the Preview 2024.7, the C++ API documentation is part of the delivery bundle and
will also be made publicly available online.

3.5 PLCnext CLI adaption

The templates of PLCnext CLI 2024.6 (download at PLCNEXT TECHNOLOGY
TOOLCHAIN | Phoenix Contact) have been reworked to support the Preview 2024.7 of
the upcoming application-relevant changes.

https://www.plcnext.help/te/Programming/Cplusplus/PLCnext_API_documentation.htm
https://www.phoenixcontact.com/en-pc/products/software-package-plcnext-technology-toolchain-1639782

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 22 / 28

Therefore, in order to re-use an existing project, a new project needs to be created by
means of PLCnext CLI 2024.6, and the sources (typically folder src) need to be copied
into the new project.

Due to changes in the Library and Component class, the existing code has to be
merged manually (member/method by member/method).

3.6 Changing the initialization system

Every Linux® system has an initialization system which is responsible for starting the
daemons and the system configuration (e.g., network configuration) when the system
boots. Up to now, PLCnext Technology firmware has used SysV initialization. Due to the
increasing complexity of the PLCnext Runtime System and the growing importance of
container technology (e.g., Podman or Docker®), it is necessary to switch to the more
modern and complex systemd .

Users who intervene directly in the Linux® OS to start their own daemons, or to integrate
additional scripts into the system start, will have to convert their start scripts from
SysV init to systemd service files. Since container apps from the PLCnext Store
currently initialize and start their containers via a special init script, these apps must
also be adapted accordingly.

Another impact is the network configuration, as systemd has its own integrated
network management. Therefore, the Linux® tools ifup and ifdown no longer exist,
and the file /etc/network/interfaces will also no longer exist. This affects all users who
manually intervene in the network configuration via the /etc/network/interfaces file.

If a user only uses Arp mechanisms for network configuration (e.g., PLCnext Engineer
or the Web-based Management), no adjustments are necessary.

3.7 Rework of network management

With the change of the Linux® initialization system (details see Changing the
initialization system), the Linux® network management is also changed from the ifup /
ifdown procedure with /etc/network/interfaces to the network management
integrated in systemd via networkd .

This change allows to implement functions such as multiple IPs per interface, multiple
gateways, VLANs and more in the medium term. It also increases the stability of the
system when the IP is changed using Linux® tools.

The network configuration is now handled by the networkd daemon, which is part of
systemd . The Linux® tools ifup and ifdown no longer exist, and the file /etc/
network/interfaces will no longer exist, either. This affects all users who manually
intervene in the network configuration via the /etc/network/interfaces file.

If a user only uses Arp mechanisms for network configuration (e.g., PLCnext Engineer
or the Web-based Management), no adjustments are necessary.

https://www.plcnextstore.com/#/
file:/C:/Users/pyjp02/AppData/Local/Temp/RHTMP/ARC_2025_pdfWQUCQC/contents/assets/snippets/ARC_2025_3.hts#init

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 23 / 28

3.8 Activation of Usrmerge

Since 2012, some Linux® distributions have been implementing the project Usrmerge which
has the goal to remove the folders /bin, /lib and /sbin by "merging" their contents into
the folders /usr/bin, /usr/lib and /usr/sbin. The reason for this is that this duplication of
directories is historical and no longer necessary today. The result is a clearer and
simpler directory structure. For compatibility reasons, only symbolic links are created
for /bin, /lib and /sbin. In addition, the home directory of the root user is no longer /
home/root but just /root.

Since 2022, major Linux® distributions like Debian have activated Usrmerge , and since
2024 also the Yocto Project® which is used to generate the PLCnext Linux OS did that.
Newer versions of systemd now require Usrmerge , so that there is no longer an
alternative to activation.

The folders /bin, /lib and /sbin do not exist anymore in the PLCnext Linux OS. Instead,
symbolic links are created:

/bin --> /usr/bin
/lib --> /usr/lib
/sbin --> /usr/sbin

Special care should be taken by users who have stored files in one of the directories
mentioned, as these could then overlay the symbolic links in the file system after an
update to the Preview 2024.7 which would lead to unpredictable behavior.

3.9 New Web-based Management (WBM 2.0)

The previous Web-based Management (WBM) is completely replaced by a new
development, called WBM 2.0. The reasons for the new development are, on the one
hand, a new work standard for the definition of web interfaces for Phoenix Contact
devices, which describes the design in a new way and considers contemporary features
such as mobile views or responsive design. As well, the previous web technology used
internally was no longer up to date.

In future, the WBM will be set up with the help of a framework (Angular.io), offering
many more options and futureproofing. In addition, it will be possible in future for users
to seamlessly integrate their own pages into the controller's WBM, e.g., via apps from
the PLCnext Store.

The look and feel as well as the operation of the WBM are new. Functionally, little or
nothing will change on the pages initially. In the Preview 2024.7, some pages are still
under development, so to access the old WBM 1.0 frontend, the URL <IP>/wbm_legacy
can be used.

3.10 Removal of Linux packages/tools/libraries

3.10.1 Removal of the vim editor

In addition to the nano editor, the vim editor is also integrated in PLCnext Linux.

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 24 / 28

In the recent past, security vulnerabilities (CVEs reported to the Phoenix Contact
Product Security Incident Response Team (PSIRT)) have frequently been discovered in
vim , so that the editor had to be updated frequently. As the security reports continue
to be more frequent, the vim editor is to be removed from the system. This will make
the system more secure.

As the memory requirement of the editor in the root file system is very high at more
than 40 MB, this step will also significantly reduce the image size of the firmware.

Only users who intervene directly in the Linux system and use the vim editor there are
affected by this change. These users must switch to the nano editor, or alternatively
translate the vim editor themselves with the SDK and integrate it into PLCnext Linux. It
would also be conceivable to provide an app that contains the vim editor.

3.10.2 Removal of the busybox package

Every Linux® system has a set of elementary basic tools such as cp , mount , or grep .
These tools are provided by program collections such as GNU core-utils , util-
Linux or net-tools . One collection that is optimized in terms of resource
requirements is busybox , which was originally developed with a focus on use on
embedded systems. The resource requirements have been reduced by omitting
features of the tools.

However, many advanced Linux® technologies (e.g., container engines) require the
basic tools in their full configuration, which is only provided by the mentioned
collections. Over the years, PLCnext Linux has seen a difficult to understand
coexistence of tools from collections such as core-utils or util-Linux on the one
hand and busybox on the other.

To regain order and future-proof the basic tools, it was decided to no longer integrate
busybox but to rely exclusively on the standard tools of the larger collections.

The impact on the user should be very small or even imperceptible. All tools that were
previously provided via busybox can still be found in the system under the same name.
As the busybox tools each support a subset of the features of the "big" tools, previous
calls should continue to work as expected.

Restriction: If users have developed parsers that evaluate the output on stdout of the
tools, these parsers will no longer work in many cases, as the output of the busybox
tools differs from that of the tools from the larger collections. Users who call the
busybox binary directly are also affected, although this should very rarely be the case.

3.10.3 Change of NTP daemon

The currently used ntpd provides a basic set of functions. However, for more complex
time synchronization tasks like those mandatory for the implementation of Time-
Sensitive Networking (TSN) this function set is not sufficient anymore.

Therefore, the ntpd daemon will be replaced by the chrony daemon. All configuration
files will be invalidated or removed from the system.

All configuration files will be invalidated/removed from the system. This change will
only affect users who intervene with the Linux® system by means of the ntpd daemon
itself and/or its configuration.

https://www.phoenixcontact.com/en-pc/service-and-support/psirt

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 25 / 28

3.10.4 Removal of strongSwan legacy configuration interface

The strongSwan Team declared the stroke plug-in as deprecated and it is disabled by
default in strongSwan 6.0:

"The legacy stroke management interface has been deprecated for many years and
has been replaced by the versatile vici management interface. Thus with strongSwan
6.0, the stroke plugin is not enabled by default anymore and has to be built
separately."

To avoid a forced removal of this deprecated plug-in in later PLCnext Control firmware
versions, it is removed from the Application-relevant Changes release on. Existing
configuration files (ipsec.conf) must be migrated to the new swanctl.conf syntax (read
the strongSwan wiki article).

Also the ipsec script was removed. To control an ipsec connection, the swanctl
commands must be used.

4 Security-related changes

4.1 Prevent using RTLD_GLOBAL when loading shared
libraries

When loading shared libraries (e.g. ACF or PLM components) the flag RTLD_GLOBAL
was used for the dlopen() system call. This causes the symbols of a loaded library to
become globally visible and may result in executing an unintended function.

The RTLD_GLOBAL flag is omitted now when loading shared libraries. Compatibility
issues are not expected regarding this issue.

4.2 Removing unprivileged folders from ld.so.conf

Up to firmware 2024.6, the following folders or entries have been put into the directory
/etc/ld.so.conf :
/usr/local/lib include /opt/plcnext/appshome/ld.configs/*.conf

This was used to find user programs or *.so files that have dependencies on other *.so
files but are not in the system. *.so files integrated into the system in this way are made
known system-wide. They could therefore also be loaded by processes running under
root privileges by mistake and thus cause all kinds of damage to the system. So that
configuration needed to be removed.

From now on, programs and *.so files that have further dependencies but are not
present in PLCnext Technology must enter a fixed search path (rpath). This happens at
the time of creation (linking) of the program or of the *.so file, or later by using chrpath .

https://docs.strongswan.org/docs/6.0/news/whatsNew.html#:~:text=The%20legacy%20stroke%20management%20interface,has%20to%20be%20built%20separately.
https://wiki.strongswan.org/projects/strongswan/wiki/Fromipsecconf
https://docs.strongswan.org/docs/6.0/swanctl/swanctl.html

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 26 / 28

4.3 Redesign of remoting to platform and security
requirements

Security mechanisms in remoting do not work under all circumstances. In particular,
security is restricted if there is more than one process running. From a security point of
view, splitting processes is necessary.

The only currently known effects are:

– multiple sessions (logins) within one TCP connection are no longer possible
– RSC services developed by users require new generation with the RSC generator

4.4 ACF can restrict capabilities and UID/GID of
processes

These measures are intended to achieve a better separation of system functions and
user applications, so that applications cannot cause any damage to the system:

Up to firmware 2024.6, the entire ARP framework ran within a few processes. In
addition, all processes ran with the same rights in the system. For example, an
application also received all rights from the user that are actually only required for
system functionalities. This needed to be reworked.

In special cases, authorizations that have been possible for applications before may no
longer be available in the system with firmware 2025.0 (and also in the preceding
Preview 2024.7).

4.5 Verification of signed application update containers

Application updates should be protected against modification so that only correctly
signed application update containers are accepted. In order to use this feature, the user
must sign such containers and configure a trust list with CA certificates on the PLC.

This depends on the following steps:

– preparation of the Commons layer for support of ASIC-E containers which are zipped
and signed collections of files

– implementation of a new Commons class for app signature validation.

No side effects on compatibility are expected.

4.6 App part types Linux Daemon and Shared Library

The app part types Linux Daemon and Shared Library are no longer supported. The
reason given for this is the security risks that can emanate from these app part types.

PLCnext Technology firmware 2025 PLCnext Control

111781_en_00 Phoenix Contact 27 / 28

Linux Daemon:

The Linux Daemon app part contained in the PLCnext App is integrated into the system
by the AppManager in such a way that it is started with root privileges by the
initialization system at system startup. Since the AppManager cannot check the Linux
Daemon itself, malicious code in the form of processes, one-time programs or scripts
can be infiltrated in this way and called or started with root privileges.

Shared Library:

The Shared Library app part contained in a PLCnext App is integrated into the system by
the AppManager and made known to the entire system by calling ldconfig . The
attack vector here is the possibility of replacing existing Shared Libraries app parts with
the help of an app, and thus, injecting any programs with manipulated Shared Libraries
that potentially contain malicious code without being noticed.

Phoenix Contact GmbH & Co. KG
Flachsmarktstraße 8
32825 Blomberg, Germany
Phone: +49 5235 3-00
Email: info@phoenixcontact.com
phoenixcontact.com

©
 P

ho
en

ix
 C

on
ta

ct
 2

02
4-

09
-1

8
11

17
81

_e
n_

00

	Introduction
	General advantages
	Changes regarding application development
	Schedule

	C++ standard, libraries and classes
	Update to C++ 20
	Library Arp.Base.Core
	Mapping Arp::byte to std::byte
	class AppDomain
	class AppDomainSingleton
	class Singleton<T>
	class ArpVersion
	class Exception
	class TypeName<T> and CommonTypeName<T>
	class TypeName<T>
	class CommonTypeName<T>

	class DateTime
	class String

	Library Arp.Base.Acf.Commons
	The library implementation of a custom project
	The library declaration
	The library definition

	The component implementation of a custom project
	The component declaration
	The component definition

	TraceController from Arp.System.Commons

	Library Arp.Base.Rsc.Commons

	Miscellaneous
	Logging
	Logging API
	Log file separation

	External libraries update
	CppFormat library replaced by libfmt 10.2.1
	boost libraries updated to version 1.84

	CMake adjustments
	API documentation
	PLCnext CLI adaption
	Changing the initialization system
	Rework of network management
	Activation of Usrmerge
	New Web-based Management (WBM 2.0)
	Removal of Linux packages/tools/libraries
	Removal of the vim editor
	Removal of the busybox package
	Change of NTP daemon
	Removal of strongSwan legacy configuration interface

	Security-related changes
	Prevent using RTLD_GLOBAL when loading shared libraries
	Removing unprivileged folders from ld.so.conf
	Redesign of remoting to platform and security requirements
	ACF can restrict capabilities and UID/GID of processes
	Verification of signed application update containers
	App part types Linux Daemon and Shared Library

